Versal Deformations of a Dirac Type Differential Operator

نویسندگان

  • Anatoliy K. PRYKARPATSKY
  • Denis BLACKMORE
چکیده

If we are given a smooth differential operator in the variable x ∈ R/2πZ, its normal form, as is well known, is the simplest form obtainable by means of the Diff(S)-group action on the space of all such operators. A versal deformation of this operator is a normal form for some parametric infinitesimal family including the operator. Our study is devoted to analysis of versal deformations of a Dirac type differential operator using the theory of induced Diff(S)-actions endowed with centrally extended Lie-Poisson brackets. After constructing a general expression for tranversal deformations of a Dirac type differential operator, we interpret it via the Lie-algebraic theory of induced Diff(S)-actions on a special Poisson manifold and determine its generic moment mapping. Using a Marsden-Weinstein reduction with respect to certain Casimir generated distributions, we describe a wide class of versally deformed Dirac type differential operators depending on complex parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Isospectral deformations for Sturm-Liouville and Dirac- type operators and associated nonlinear evolution equa- tions

We give a systematic account of isospectral deformations for Sturm-Liouville and Dirac-type operators and associated hierarchies of nonlinear evolution equations. In particular, we study generalized KdV and modified KdV-hierarchies and their reduction to the standard (m)KdV-hierarchy. As an example we study the Harry Dym equation in some detail and relate its solutions to KdV-solutions and to H...

متن کامل

Leibniz algebra deformations of a Lie algebra

In this note we compute Leibniz algebra deformations of the 3-dimensional nilpotent Lie algebra n3 and compare it with its Lie deformations. It turns out that there are 3 extra Leibniz deformations. We also describe the versal Leibniz deformation of n3 with the versal base.

متن کامل

Noncommutative Manifolds the Instanton Algebra and Isospectral Deformations

We give new examples of noncommutative manifolds that are less standard than the NC-torus or Moyal deformations of R. They arise naturally from basic considerations of noncommutative differential topology and have non-trivial global features. The new examples include the instanton algebra and the NC-4-spheres S4 θ . We construct the noncommutative algebras A = C∞(S4 θ ) of functions on NCsphere...

متن کامل

Surface Networks

We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator. Despite offering ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998